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Piggybacking on quantum streams

Marco Chiani ,1,* Andrea Conti ,2,† and Moe Z. Win 3,‡

1Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”/CNIT, University of Bologna, Bologna 40136, Italy
2Department of Engineering/CNIT, University of Ferrara, Ferrara 44122, Italy

3Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 30 November 2019; accepted 21 May 2020; published 9 July 2020)

This paper shows that it is possible to piggyback classical information on a stream of qubits protected
by quantum error-correcting codes. The piggyback channel can be created by introducing intentional errors
corresponding to a controlled sequence of syndromes. These syndromes are further protected, when quantum
noise is present, by classical error-correcting codes according to a performance-delay trade-off. Classical
information can thus be added and extracted at arbitrary epochs without consuming additional quantum resources
and without disturbing the quantum stream.
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I. INTRODUCTION

We foresee the possibility of piggybacking classical infor-
mation on a stream of qubits protected by a quantum error-
correcting code (QECC). To this end, we propose a method
to send a sequence of classical bits on quantum streams by
introducing intentional noise. This noise induces a controlled
sequence of syndromes, which can be measured without
destroying quantum superposition. The syndromes can then
be used to encode classical information on top of quantum
streams, enabling several possible applications. In particular,
piggybacking on quantum streams can facilitate control and
annotation for quantum systems and networks.

Consider, for example, a network in which nodes exchange
quantum information among each other [1–7]. In addition to
user data, control data such as synchronization patterns, node
addresses, and routing parameters are needed for the network
operation. In classical networks, control data consume physi-
cal resources. For instance, in-band synchronization requires
that transmitting nodes insert specific patterns of bits into data
streams (consuming additional bandwidth) to delimit packets,
and that the receiving nodes search for such patterns from
incoming bits [8]. However, inserting qubits as control data
is not a viable option for quantum networks, since measuring
can destroy quantum state superposition [9]. For this reason,
several studies assert that quantum networks will need clas-
sical networks for out-of-band signaling and control [7]. On
the other hand, transmission of classical bits together with
random numbers (using continuous variables) for quantum
key distribution (QKD) was developed in Refs. [10–12] for
security enhancement of classical networks. Instead, we aspire
to the transmission of classical bits together with quantum bits
(using discrete variables) for control of quantum networks.
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A possible way to create a control channel in quantum
networks is to introduce dedicated auxiliary orthogonal states.
For instance, consider a quantum system with qutrits (Hilbert
space of dimension three) instead of qubits, where the orthog-
onal states |0〉, |1〉 are used as the basis for information, and an
additional orthogonal state |2〉 is used for synchonization [13].
Inserting states |2〉 in different positions along the quantum
stream can also carry classical information. Note that systems
employing qutrits have read-only capability since altering the
classical information would require changing the positions of
the |2〉’s. Besides this limitation, the main difficulty is the need
for working with qutrits instead of the usual qubits, thereby
impacting the overall system architecture.

In this work, we propose a new method to write, read,
and eventually rewrite classical information by piggybacking
on top of quantum streams. Our method can add and extract
the classical information at arbitrary epochs without consum-
ing additional quantum resources and without disturbing the
quantum stream. This technique enables new capabilities by
unleashing a hidden classical channel provided by QECCs.

II. PIGGYBACKING VIA INTENTIONAL ERRORS

This section first introduces the notation and the main
elements of QECCs, then it proposes the idea of piggybacking
classical information on a quantum stream for noiseless and
noisy quantum channels.

A. Preliminaries

Consider quantum information carried by qubits, which
are elements of the two-dimensional Hilbert space H2, with
basis |0〉 and |1〉 [9]. An n-tuple of qubits (n qubits) is
an element of the 2n-dimensional Hilbert space, H2n

, with
basis composed by all possible tensor products |i1〉|i2〉 · · · |in〉,
with i j ∈ {0, 1}, 1 � j � n. The Pauli operators, denoted as
I, X , Z, and Y , are defined by I|a〉 = |a〉, X |a〉 = |a ⊕ 1〉,
Z|a〉 = (−1)a|a〉, and Y |a〉 = i(−1)a|a ⊕ 1〉 for a ∈ {0, 1}.
These operators either commute or anticommute. The Pauli
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FIG. 1. Quantum communication link employing quantum error
correction.

group Gn on n qubits is generated by all possible n-fold tensor
products of these four operators together with the factors ±1
and ±i. Two operators in Gn commute if and only if there
is an even number of places where they have different Pauli
matrices that are not the identity I.

When necessary “q-codeword” and “c-codeword” will be
used to distinguish quantum and classical codewords. In the
block diagrams, single lines and double lines are used for
qubits and classical bits, respectively. Figure 1 shows the
block diagram of a generic quantum communication link
between two nodes employing a QECC designed to cope with
channel impairments [14–22]. While the proposed method is
valid for all QECCs, for the sake of clarity our discussion is
restricted to the case of block codes.

Let [[n, k]] denote a QECC that encodes k data qubits |ϕ〉
into a codeword of n qubits |ψ〉. Specifically, consider a stabi-
lizer code C generated by n − k independent and commuting
operators Gi ∈ Gn, called generators, such that the subgroup
generated by these Gi’s does not contain −I [9,18,21]. The
code C is the set of quantum states |ψ〉 satisfying

Gi|ψ〉 = |ψ〉 , i = 1, 2, . . . , n − k . (1)

Consider a codeword |ψ〉 ∈ C affected by a quantum
channel error described by the operator E ∈ Gn. For error
correction, the received state E|ψ〉 is measured according to
the generators G1, G2, . . . , Gn−k , resulting in a quantum error
syndrome s(E ) = (s1, s2, . . . , sn−k ), with each si = +1 or −1
depending on the fact that E commutes or anticommutes with
Gi, respectively. Note that, due to (1), the syndrome depends
on E and not on the particular q-codeword |ψ〉. Moreover,
measuring the syndrome does not change the quantum state,
which remains E|ψ〉 [9,18,21]. Let S = {s(1), s(2), . . . , s(m)}
be the set of m = 2n−k possible syndromes, with s(1) =
(+1,+1, . . . ,+1) denoting the syndrome of the operators E
(including the identity I, i.e., the no-errors operator) such that
E|ψ〉 is still a valid q-codeword.

Among the set of channel errors on the n qubits pro-
ducing the syndrome s(i), let Q(i) denote the operator cor-
responding to the specific error that can be corrected,
and let Q = {Q(1), Q(2), . . . , Q(m)}. In other words, if the
measured syndrome is s(i), the quantum decoder applies
the recovery operator Q(i)† to produce a valid codeword.
For example, consider the [[3,1]] repetition QECC that
can correct one bit-flip error by mapping a qubit α|0〉 +
β|1〉 into a q-codeword α|000〉 + β|111〉. This code has
generators G1 = ZZI and G2 = IZZ, and syndromes S =
{(+1,+1), (−1,+1), (−1,−1), (+1,−1)} with correspond-
ing correctable errors Q = {III, XII, IXI, IIX}.

FIG. 2. The piggyback syndrome channel.

B. Piggybacking: the basic idea

The basic idea of piggybacking is described in the follow-
ing. Consider an [[n, k]] QECC that encodes k data qubits |ϕ〉
into a codeword of n qubits |ψ〉. So, a sequence |ϕ1〉, |ϕ2〉, . . .
of data qubits is encoded into a sequence of q-codewords
|ψ1〉, |ψ2〉, . . .

The transmitter inserts intentional errors by employing a
sequence of operators P1, P2, . . . with corresponding error
syndromes s1, s2, . . . so that the transmitted codewords are
P1|ψ1〉, P2|ψ2〉, . . . In particular, these intentional errors are
chosen from the set of correctable errors, i.e., Pi ∈ Q. A
decoder at the receiver side measures the quantum error syn-
dromes and infers the sequence of intentional errors ŝ1, ŝ2, . . .

The aforementioned procedure creates an m-ary discrete-
input discrete-output channel with alphabet S for both input
and output symbols. This classical channel is referred to as a
piggyback syndrome channel (PSC) (Fig. 2).

In the following, we describe in detail the proposed method
for a noiseless quantum channel in Sec. II C and for a noisy
quantum channel in Sec. II D.

C. Piggybacking over a noiseless quantum channel

If the quantum channel is noiseless and an intentional
error is introduced by applying the operator Pi ∈ Q on
the ith q-codeword, the transmitted state will be Pi|ψi〉
(see Fig. 3). The quantum channel does not introduce further
errors, and thus syndrome measured at the decoder will be
ŝi = s(Pi ) = si. Therefore a sequence of syndromes, carrying
classical bits of information, is sent through this error free
PSC. Moreover, the Pi can be determined from the measured
syndrome and the state |ψi〉 can be recovered by applying
P†

i to the received state Pi|ψi〉. The proposed piggybacking
method enables sending n − k classical bits per q-codeword,
without additional qubits and without destroying quantum
superposition.

A possible application consists in adding, to a group of
q-codewords, control data in terms of classical bits that one
can read and write without altering the quantum information.
Figure 4(a) illustrates an application example, in which a
unique pattern of intentional errors is sent over the PSC for
quantum frame synchronization, similar to the classical case
[8]. Another application is annotation of a quantum stream, as
reported in Figs. 4(b) and 4(c).

D. Piggybacking over a noisy quantum channel

We now consider a noisy quantum channel and, as in the
previous case, an intentional error is introduced by applying
Pi ∈ Q on the ith q-codeword. If the quantum channel in-
troduces an error E i ∈ Gn, then the measured syndrome will
be ŝi = s(E iPi ) corresponding to the composite operator E iPi

(see Fig. 5). Therefore, the PSC can be viewed as a classical
channel with errors. To cope with the effects of quantum
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FIG. 3. Quantum piggybacking by intentional errors, noiseless quantum channel. The block added to realize the piggyback classical
channel is in red.

channel on the PSC, we envision the use of classical error-
correcting codes (CECCs), with alphabet S for the encoded
symbols. In particular, classical information is encoded at the
transmitter so that a transmitted vector (s1, s2, . . . , sN ) is a
c-codeword of N syndromes. The CECC can be any one of
the classical codes, including BCH, RS, convolutional, LDPC,
and turbo codes [23]. A classical error correction block at
the receiver (see Fig. 5) aims to correct the errors due to the
quantum channel; at its output the syndromes s̆i are equal to
the transmitted syndromes si in case of successful correction.
Indeed, by employing CECCs with rates below the capacity
of the PSC, errors on the received syndromes caused by the
quantum channel can be corrected with probability arbitrarily
close to one [24]. Therefore applications similar to those for
the noiseless case of Fig. 4 are also possible for the noisy case.

The presence of both intentional and unintentional errors,
described respectively by the operators Pi and E i, has to be
taken into account in the quantum error correction process.
Recall that the Pi is correctable by design; nevertheless, the
combined error may not be in the set of correctable errors, i.e.,
E iPi /∈ Q even if E i ∈ Q. For example, one intentional error
together with one quantum channel error on different qubits
of the same q-codeword would produce an uncorrectable

(a)

(b)

(c)

FIG. 4. Examples of piggybacking on a noiseless channel.
(a) Piggybacking synchronization patterns on a quantum stream,
frames composed of seven q-codewords. The synchronization word
pattern used in this example is s(4), s(2), s(3), and thus synchroniza-
tion is obtained with three intentional errors on the last three q-
codewords. (b) Piggybacking the classical information s(3), s(1), . . .

on the quantum stream |ψ1〉, |ψ2〉, . . . (c) Piggybacking ten classical
bits of information over a quantum packet composed of f ive q-
codewords, assuming each q-codeword |ψi〉 = αi|000〉 + βi|111〉 is
from a repetition [[3,1]] QECC. Here Q(1) = no error, Q(2) = bit-flip
on the first qubit, Q(3) = bit-flip on the second qubit, Q(4) = bit-flip
on the third qubit.

combined error for a QECC with single qubit error correction
capability. The CECC can also help alleviating this problem,
in addition to protecting the PSC from quantum channel errors
as discussed before. In fact, if classical error correction on
the PSC is successful, the intentional error with operator Pi

is known and the quantum channel error with operator E i ∈
Q can be determined by observing that the measured syn-
drome is ŝi = s(E iPi ) = s(E i ) ◦ s(Pi ), where ◦ denotes the
Hadamard product. In fact, s(E iPi ) = +1 if E iPi commutes
with Gi, which happens when E i and Pi both commute or both
anticommute with Gi. Since the syndrome elements are ±1, it
follows also that s(E i ) = ŝi ◦ s(Pi ).

The classical decoder provides s̆i = s(P̂i ) where P̂i is the
operator corresponding to the estimated intentional error.
Therefore, the error computation block in Fig. 5 infers E i

by computing ŝi ◦ s̆i = s(Ê i ), where Ê i is the operator corre-
sponding to the estimated quantum channel error. Then, the
quantum error correction block recovers the quantum state
from the composite error by applying P̂

†
i Ê

†
i . Notice that,

with the proposed method, the capability of the QECC is not
affected by piggybacking, as long as the errors in the PSC are
successfully corrected by the CECC.

III. CAPACITY OF THE PIGGYBACK SYNDROME
CHANNEL

As observed, if the quantum channel is noiseless, n − k
[bits/q-codeword] can be sent over the PSC. On the other
hand, if the quantum channel is noisy, the capacity of the PSC
depends on the statistics of the quantum channel errors. In
particular, if the quantum error process is memoryless (i.e.,
errors E i and Ej are independent for i �= j), the PSC can
be viewed as a classical discrete memoryless channel; its
mutual information is determined by the transition probability
together with the probability distribution p(s) of the input s.
The capacity in [bits/q-codeword] is

CPSC = max
p(s)

{
H (s) − H (s|ŝ)

}
(2)

where H (s) is the Shannon entropy [24].
Define the probability that the measured syndrome at the

receiver is different from the transmitted syndrome as

pPSC = Pr
{
ŝ �= s

}
. (3)

Consider a quantum channel error that maps the transmitted
syndrome into one of the remaining 2n−k − 1 syndromes with
equal probability, which is the worst case for the capacity.
Then, the PSC is an m-ary symmetric channel (m = 2n−k)
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FIG. 5. Quantum piggybacking by intentional errors, noisy quantum channel. The blocks added to realize the piggyback classical channel
are in red.

with transition probabilities

Pr
{
ŝ = s( j)|s = s(i)

} =
{

1 − pPSC j = i
pPSC

2n−k−1 j �= i .

From (2), the capacity results in

CPSC = (n − k) − h(pPSC) − pPSC log2(2(n−k) − 1), (4)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy function.

The capacity in (4) is completely characterized by pPSC

which depends on the characteristics of the quantum channel.
An upper bound for pPSC is the probability that the quantum
channel introduces an error on a q-codeword, Pr {E i �= I},
since this accounts also for the undetectable quantum errors
for which s(E iPi ) = s(Pi ).

For example, consider a memoryless quantum depolarizing
channel, where each qubit is subject to no error (operator I)
with probability 1 − pd, or to errors of type X ,Y and Z
each with probability pd/3 [9]. For a q-codeword of n qubits,
pPSC < Pr {E i �= I} = 1 − (1 − pd )n, which together with (4)
provides a lower bound on the capacity for values of pPSC be-
low 1 − 2−(n−k). Figure 6 shows CPSC as a function of pPSC for
the [[5, 1]], [[7, 1]], and [[9,1]] QECCs with single qubit error
correction capability [9]. Notice that for pPSC = 0 the capacity
is that of the noiseless case, i.e., n − k [bits/q-codeword].
For noisy channels with pPSC = 0.1 the loss in capacity is
of around one bit. Figure 7 shows the lower bound on the
capacity of a memoryless quantum depolarizing channel as
a function of pd for the same QECCs. For a given value
of pd, characteristic of the quantum depolarizing channel,
it is possible to determine what is the minimum guaranteed
capacity of the PSC for different quantum codes.

IV. IMPACT OF PIGGYBACKING ON THE QECC
CAPABILITY

As observed, the PSC does not affect the capability of
the QECC if the errors on the measured syndromes are suc-
cessfully corrected by the classical error correction block in
Fig. 5. If the classical error correction fails, then s̆i �= si for
some i, causing also a failure in the quantum error correction

block. Thus, the probability of a q-codeword error due to
piggybacking is equal to the probability of residual syndrome
error after decoding

pQEP = Pr
{
s̆i �= si

}
(5)

which depends on both the quantum channel and the specific
CECC used.

The case of a quantum link employing an [[n, k]] quantum
code and a nonbinary (N, K ) classical code over the Galois
field GF(2n−k ) is illustrated in the following. With this choice,
each symbol of a c-codeword is mapped into a syndrome. The
encoder then takes K information syndromes (i.e., (n − k)K
classical bits) and produces a c-codeword of N syndromes,
resulting in (n − k)K/N [bits/q-codeword]. Thus the allowed
code rates can be determined using (4) as

K

N
< 1 − h(pPSC) + pPSC log2(2n−k − 1)

n − k
. (6)

To characterize the pQEP in (5), consider a Reed Solomon
code RS(N, K ) over GF(2n−k ) with length N = 2n−k −
1. Since it is a maximum distance separable code, the

FIG. 6. Capacity of the piggyback syndrome channel as a func-
tion of pPSC for different QECCs.
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FIG. 7. Lower bound on the capacity of the piggyback syndrome
channel for a quantum depolarizing channel as a function of pd for
different QECCs.

RS(N, N − 2T ) can correct up to T errors per c-codeword
[23]. For this code, the probability of a q-codeword error due
to piggybacking is upper bounded by

pQEP �
N∑

�=T +1

(
N

�

)
p�

PSC(1 − pPSC)N−� . (7)

Figure 8 shows the upper bound as a function of pPSC

when using the [[7,1]] QECC together with RS(63, 63 − 2T )
codes over GF(26) for the PSC. It can be seen that with the
RS(63,23) code, which can correct up to T = 20 erroneous
syndromes per c-codeword, the PSC has a negligible impact
on the quantum stream (pQEP < 10−4) whenever pPSC < 0.15.
Notice that the quantum decoder will experience a delay of
N = 63 q-codewords.

The impact of piggybacking on quantum streams can be
reduced for a given quantum channel (equivalently, noisier
quantum channels can be considered for a given maximum
tolerable q-codeword error probability) by using more power-
ful CECCs, without consuming additional quantum resources.
However, it is important to observe that using longer c-
codewords results in larger delay for the quantum error cor-
rection. Therefore, a performance–delay trade-off has to be

FIG. 8. Upper bound on the probability of a q-codeword error
due to piggybacking, pQEP, as a function of pPSC for different
correction capabilities T .

accounted for in designing CECCs to control the impact of
piggybacking on quantum streams.

V. CONCLUSION

We put forth a method to piggyback up to n − k classi-
cal bits on top of each q-codeword of an [[n, k]] quantum
code. Such piggyback operation exploits the syndromes of
a quantum code by utilizing classical codes according to a
performance-delay trade-off. The proposed method enables
new capabilities, even for noisy quantum channels, without
consuming additional quantum resources and without disturb-
ing the quantum stream.
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