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Quantum Sensing and Communication
via Non-Gaussian States

Andrea Giani

Abstract—Quantum sensing and communication (QSC) is piv-
otal for developing next-generation networks with unprecedented
performance. Many implementations of existing QSC systems
employ Gaussian states as they can be easily realized using
current technologies. However, Gaussian states lack non-classical
properties necessary to unleash the full potential of QSC. This
motivates the use of non-Gaussian states, which have non-classical
properties beneficial for QSC. This paper establishes a theo-
retical foundation for QSC employing photon-varied Gaussian
states (PVGSs). The PVGSs are non-Gaussian states that can
be generated from Gaussian states using current technologies.
First, we derive a closed-form expression for the generalized
bilinear generating function of ordinary Hermite polynomials
and show how it can be used to describe PVGSs. Then, we
characterize PVGSs by deriving their Fock representation and
their inner product. We also determine equivalence conditions for
Gaussian states obtained from arbitrary permutations of rotation,
displacement, and squeezing operators. Finally, we explore the
use of PVGSs for QSC in several case studies.

Index Terms—Quantum sensing, quantum communication,
quantum information, non-Gaussian quantum states, quantum
state characterization.

I. INTRODUCTION

UANTUM sensing and communication (QSC) is a

promising field that has the potential to revolution-
ize information technologies, thus paving the way for the
development of next-generation networks with unprecedented
performance. Specifically, QSC underpins the extension of
classical information theory fields, such as coding [1], [2], [3],
[4], [5], [6], rate distortion [7], [8], [9], [10], [11], [12], sens-
ing [13], [14], [15], and communication [16], [17], [18], [19]
to the quantum domain. Quantum information technologies
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exploit properties of quantum mechanics to measure physical
quantities of target systems and to exchange information. Such
tasks are respectively referred to as quantum sensing [20],
[21], [22], [23], [24], [25], [26], [27] and quantum communica-
tion [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[391, [401, [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51]. Many existing QSC systems are implemented with
light sources that generate Gaussian quantum states. The use
of Gaussian states is motivated by well-established theoretical
foundations [52], [53], [54], [55], [56] and by the possibility of
generating and manipulating them using current technologies.
Unfortunately, Gaussian states do not possess several non-
classical properties, including strong non-Poissonian photon
number distribution and negative Wigner function [55], [56],
[571, [58], [59], [60], [61], [62], which are necessary to fully
unleash the potential of QSC. This calls for the use of non-
Gaussian states, which play an important role toward achieving
quantum supremacy [59], [60], [61]. However, the develop-
ment of QSC systems employing non-Gaussian states can
be challenging as it requires the implementation of complex
optical processes, the characterization of such non-Gaussian
states, and the establishment of theoretical foundations
for QSC.

Non-Gaussian states are a broad class of quantum states
that exhibit non-Gaussian Wigner function [61]. In the
class of non-Gaussian states, photon-added quantum states
(PAQSs) [63], [64], [65], [66] and photon-subtracted quantum
states (PSQSs) [67], [68], [69], [70], [71] are of interest as they
can be realized in laboratory [72], [73], [74], [75], [76], [77],
[78] and their non-classical properties can be measured [78],
[79], [80], [81], [82], [83]. In particular, PAQSs and PSQSs
are obtained, respectively, by exciting and annihilating photons
from an initial state of the quantized electromagnetic field.
Recently, PAQSs and PSQSs have been unified in terms of
photon-varied quantum states (PVQSs), which are obtained
via photon-variation operations on initial quantum states [84];
such a photon-variation unifies photon-addition and photon-
subtraction. When photon-variation operations are performed
on initial Gaussian states, the corresponding PVQSs are
referred to as photon-varied Gaussian states (PVGSs). An
important property of PVGSs is their generality, as they
reduce to Gaussian states under certain conditions. In the
literature, subclasses of PVGSs have been used for quan-
tum sensing [85], [86], [87], [88], [89], [90] and quantum
communications [91], [92], [93], [94], [95], [96], [97], [98],
showing that their degrees of freedom can be engineered
to provide performance improvements compared to Gaussian
states.

(© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0009-0006-2615-8991
https://orcid.org/0000-0002-8573-0488
https://orcid.org/0000-0001-9224-2178

GIANI et al.: QSC VIA NON-GAUSSIAN STATES

However, the development of QSC with non-Gaussian states
is hindered by the lack of a theoretical foundation, which can
be used to determine performance benchmarks and to guide
the system design. The fundamental questions related to the
design of QSC systems with non-Gaussian states are: (i) which
classes of non-Gaussian states are more suitable for QSC; and
(i) how may such classes of states be characterized and then
employed in QSC systems? The answers to these questions
provide insights for the design of QSC systems with non-
Gaussian states. The goal of this paper is to introduce the
use of PVGSs for unleashing QSC. This paper establishes a
theoretical foundation for QSC with PVGSs, accommodating
for noise in state preparation, and shows how to exploit such
class of states for different QSC applications. In particular, the
key contributions are summarized as follows:

e we determine equivalence conditions for Gaussian states
obtained from arbitrary permutations of rotation, dis-
placement, and squeezing operators;

e we characterize PVGSs by deriving their Fock rep-
resentation and their inner product using generalized
Hermite-Kampé de Fériet (H-KdF) polynomials; and

e we explore the use of PVGSs for QSC, utilize their
characterization to design QSC systems, and quantify
their performance in several case studies.

The remaining sections are organized as in the following.
Section II recalls generalized H-KdF polynomials and derives
a closed-form expression for the generalized bilinear gener-
ating function of ordinary Hermite polynomials. Section III
reviews the theory of Gaussian states, derives equivalence
conditions for them, and defines PVGSs. Section IV deter-
mines the Fock representation of PVGSs. Section V derives
the inner product of pure PVGSs. Section VI explores the use
of PVGSs for QSC and quantifies their performance in several
case studies. Finally, Section VII provides our conclusions.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
are denoted by bold lowercase letters. Matrices and operators
are denoted by bold uppercase letters. For example, a random
operator and its realization are denoted by X and X, respec-
tively. Sets are denoted by upright sans serif font except for
the sets of natural numbers, integer numbers, real numbers,
and complex numbers, which are denoted by N, Z, R, and C,
respectively. For n € Z, il = — for n < 0, and 7l = + for
n > 0. For z € R, |z] denotes the greatest integer less than
or equal to z. For z € C, |z| denotes its absolute value, £z €
(—m, ] denotes its angle, z* denotes its complex conjugate,
and 2 = /—1. For z € C, the principal branch of the complex
square root is chosen such that \/z = |z|'/2 exp{s(£2)/2}.
For a matrix M, [M], ; denotes the element in the i-th row
and j-th column. The adjoint of an operator is denoted by (-)*.
The annihilation and the creation operators are denoted by
A and AT, respectively. The set of density operators defined
on a Hilbert space H is denoted by ©(H). The identity
operator defined on a Hilbert space H is denoted by I.
For two operators X and Y, the commutator is denoted
by [X,Y]. = XY — Y X. The rotation operator with
parameter ¢ € R is Ry = cxp{ngATA}. The displacement
operator with parameter u € C is D, = exp{MAT — u*A}
The squeezing operator with parameter ¢ € C is S =
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exp{%C(AT)Q — %C‘AQ}. The Pauli matrices X and Z are
X=[9 {land Z=[§ O], respectively.

II. GENERALIZED HERMITE-KAMPE DE FERIET
POLYNOMIALS AND BILINEAR GENERATING FUNCTIONS

This section first recalls generalized H-KdF polynomials
and associated subclasses. Then, it derives a closed-form
expression for the generalized bilinear generating function
of ordinary Hermite polynomials [99], [100]. Such a bilinear
generating function is found to play a crucial role in the
characterization of PVGSs.

A. Definitions

Generalized H-KdF polynomials [101], [102], [103], [104],
also referred to as generalized Hermite polynomials, are a
class of polynomials that extend both two-variable H-KdF
polynomials [101], [102], [103], [104] and ordinary Hermite
polynomials [105], [106], [107].

Let x,y, z,u,t € C and m,n € N. The generalized H-KdF
polynomials are defined as

min{m,n}

H,, _ H,_
Hmm(x,y,z,u\t)ém'n' Z tk m k(xay) n k:(Z?u)

kl(m — k)!(n — k)!

k=0
)
where
lp/2] 1
Hy(€,w) £ p! ];) mfpf%wk ?)

with p € N, are two-variable H-KdF polynomials. Notice that
ordinary Hermite polynomials are defined as

lp/2] (_1)k
Hy(§) £pl Y (2P 3
and are obtained from two-variable H-KdF polynomials in (2)
via the following relation

Hy(§) = Hp(2¢,-1). “4)

B. Generalized Bilinear Generating Function

To facilitate the characterization of PVGSs developed in the
remainder of the paper, we define the function

1

(1 _a2)%

2@ —ya) . 2(y—ma)
><HT’S< 7 ; T3 1‘26)
(%)

where z,y, o, 8 € C,a # 1, r;s € N, and M (x,y|a) is the
Mehler function defined as

G(z,y;r,sla, B) £ M(z,yla)

1
M(z,y|la) = ex
(29l0) & o p<
The following lemma uses (5) to determine a closed-form
expression for the generalized bilinear generating function of
ordinary Hermite polynomials.
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Lemma 1: Let z,y,t € C, |t| < 1, and r,s € N. The
generalized bilinear generating function of ordinary Hermite
polynomials has the following expression

o0

tn
G(x,y;r,5|t,t) = Z()WHn+r(I)Hn+s(y) (7)
O
Proof: See Appendix A. X
Notice that for » = 0 and s = 0, (7) reduces to
o0 tn
n=0

which is the standard bilinear generating function of the
ordinary Hermite polynomials in (3).

III. GAUSSIAN AND PHOTON-VARIED GAUSSIAN STATES

This section reviews the theory of Gaussian states, derives
equivalence conditions for Gaussian states obtained from
arbitrary conventions and permutations of unitary operators,
and defines the class of PVGSs.

A. Preliminaries on the Single Bosonic Mode

Consider a single bosonic mode of the quantized electro-
magnetic field described within an infinite dimensional Hilbert
space ‘H spanned by the complete orthonormal Fock basis
{|n)} ,en> Where |n) is the Fock state with exactly n photons.
Let @Q and P be the unbounded quadrature operators of the
quantized field that satisfy the canonical commutation relation
[Q,P] = uly. Let A= (Q+1P)/v2and AT = (Q —
1P)/+/2 be the associated bosonic annihilation and creation
operators, respectively. The canonical commutation relation
for A and A" is [A,A"]_ = Iy. The eigenvalues and
eigenvectors of the self-adjoint operator AT A, called number
operator, are related by

AT Aln) = n|n)

which shows that the mean number of photons of |n) is
(n|ATA|n) = n.

B. Gaussian States

Gaussian states are quantum states generated by applying
permutations of the unitary operators Ry, D,,, and S; on either
the vacuum or the thermal state. Such operators can be defined
according to different conventlons This paper considers the
convention Ry = — e0ATA D, = — A= A and St
e3¢(AN)? =3¢ A . This ch01ce is not restrictive as Gaussian
states defined accordlng to arbitrary conventions and permu-
tations of rotation, displacement, and squeezing operators can
always be written according to any other convention and
permutation by properly modifying the operator parameters.
We define the most general Gaussian state as

E(p,11.¢,7) 2 RyD,S:EnSIDJRL € D(H) (8
where
—_— A n"
B £ Z:: A Ty el € D) ©)
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is the thermal state with intensity (mean number of photons)
n given by the Planck law 7 = (exp(hw/(kgT)) — 1)71, in
which w, T h, and kp are respectively the angular frequency
of the field, the absolute temperature, the reduced Planck con-
stant, and the Boltzmann constant. Notice that = (¢, i, (, 72)
in (8) is mixed due to =i}, being mixed when 7 > 0. In some
contexts, = (¢, u,(,n) is also referred to as noisy Gaussian
state as =iy, in (9) can model thermal fluctuations impairing
the preparation of a pure Gaussian state. For n = 0 (i.e., for
T — 0), Zy, reduces to the vacuum state and (8) results in
the density operator of a pure Gaussian state, namely

Z(¢,11,¢,0) = RyD,S;|0)0|S D] RY,. (10)
The ket representation of the pure Gaussian state in (10) is
¢, 1, C) & RyD,S;|0) € H. (11)

In particular, (11) defines a pure Gaussian state according to
Caves’ definition [108]. An equivalent definition can be given
according to Yuen as [109]

|¢aﬂa<> = R¢SCDMA<+M*V<|O> (12)

where the parameters
A¢c = cosh(|¢]) (13a)
ve = sinh(|¢|) 44+ (13b)

generate the linear transformatlon that maps bosonic operators
A, AT to new operators A Af according to [110, eq. (1.8)]

A=)\A-y A
Al =)AT - A

(14a)
(14b)

Since A and v satisfy |[A¢]? — |ve|? = 1, (14) defines
a canonical Bogoljubov-Valatin transformation that preserves
the commutation relation, i.e., [A, AT]_ = [A, AT]_ = L.
An important property of Gaussian states is their closure
under rotational transformations. Indeed, from the Baker-
Campbell-Hausdorff formula [53], it can be found that

D,S; = D;S:R; (15)
where
fi = pe? (16a)
¢ = (e, (16b)

Therefore, the mixed Gaussian state defined in (8) can equiv-
alently be written as

E(¢7 1y Ca ﬁ) - DﬂSéEtthljg
= 5(0,/1,¢,n)

which is obtained by using (15), (16), and by noticing that
the thermal state is invariant to rotations, i.e., R¢,EthRT
Zin. Analogously, a pure Gaussian state defined in (11) can
equivalently be written as

6, 1,¢) = DaS;[0)
=10, /2,¢)

(17a)
(17b)

(18a)
(18b)



GIANI et al.: QSC VIA NON-GAUSSIAN STATES

21

TABLE I
EQUIVALENCE CONDITIONS FOR GAUSSIAN STATES DEFINED ACCORDING TO DIFFERENT CONVENTIONS AND THOSE USED IN THIS PAPER, WHICH
ARE DEFINED BY (8) AND (11) FOR MIXED AND PURE GAUSSIAN STATES, RESPECTIVELY. COEFFICIENTS Ag AND vg ARE GIVEN BY (13).

Operator Transformations of ¢, u, ¢ Operator Transformations of ¢, p, ¢
Chain ¢ I ¢ Chain 1) I ¢
R, Dy S;| —6 —a -B D; S; Ry | —6 —aet —Betr20
R, Dy S;| -0 —a +8 Dy S; Ry| +0 —ae " —Be 20
Ry Dng -0 +a -B Dy ngg -0 —aet® +Bet20
R, Df Sg -9 +a +8 Dy S;Rg +6 —ae +Be20
RS Dy S;| +6 —a -8 D S; Ry | -0 +aet® —Betr20
RS Dy s; +6 —a +8 DJS; RS| +06 +ae —Be120
RS D S;| +6 +a -B D;ng; -0 +aet® +Bet20
R{DfS;| +6 +or +8 DI SSR;| +0 o™ +B e 20
RgSgD,; —0 —alg — oe*uﬂ -5 S[;R;D,; —0 —alg — a*l/geﬂe —Bet20
R, S, Df| -6 +adg + a*vg —B S[;R(;Da7L —0 +adg + a*fvger?? —Betr20
R, sgD; -0 —adg + a*vg +8 sﬁ—RgD(; +6 —adg —a*vge=20 | —pe—20
Ry S;Di| -6 +adg — a*vg +8 S;RyDI| +60 | +alg+a*vge 2 | —pge2f
R;S/; D, | +6 —alg — 04*1/5 -5 S;R; D, | —60 —alg + o VBCZQG +Bet20
RS S; Di| +6 +adg + afug -8 S{R,Di| -0 +adg — afvger?? +8etr20
RSSIDy| +6 —adg + afug 48 SFRIDy| +6 | —adg+a*yge 20 | e 20
R;SgDJ +6 +alg — 04*1/5 +8 S;RJDDJ[ +0 +alg — a*l/ﬁe’ﬂe +Be 20
Dy Ry S5 | -0 —aqet?? —B S; Dy Ry | —0 —adge? — a*vger? —Betr20
D; R, Sf| -0 —aet? +8 S; Dy Ry | +6 |—aXge 0 —a*uge 0| —ge 20
D‘;R;Sg +6 —ae -5 SEDDJ[Rg —0 +a)\ﬁe’0 + oz*uge“9 —Betr20
D;R;S; +6 —ae +8 Sy DJRQr +0 | +arge ™ +afvge 0| —Be20
D;"RG_ Sy | -0 +aet?? -8 Sg' Dy R,| —0 —adge + a*vget? +Bete20
DR, S;| -6 +aet? +8 SyDy Ry| +6 |—alge™? +a*vge™? | +pe20
DDJ[R;FSI; +6 +ae -5 SgDJR; —0 +a)\[3619 — 04*1/567’9 +pBet20
DJR;Sﬁ7L +6 +ae +8 .S';DOJ[RéF +0 |+arge ™ —a*vge 0| +Be 20
which is obtained by using (15), (16), and by noticing that e3BTAT—LB(AN?  for s —
R,|0) = |0). For pure Gaussian states defined according to CHES SABAT gAY o (21¢)

Yuen, see (12), the closure under rotational transformations is
preserved as

|¢7 1y C> = R¢SCD,U,)\C+,LL*V< ‘0>
= Sc‘Dﬂ)\5+ﬂ*v<~|0>' (19)

C. Equivalence Conditions for Gaussian States

In general, Gaussian states can be obtained for any permuta-
tion of rotation, displacement, and squeezing operators, which
in turn can be defined according to different conventions. It
is therefore desirable to establish equivalence conditions for
Gaussian states obtained according to arbitrary definitions. To
this aim, for n € Z, we introduce the following notation

n<0
n>0

~ | — for

= 20
+ for (20)

which can be used to define the generalized unitary operators

e_ZGATA for r=-1
R} £ 21a
o ewA’A for r=+1 (212)
D& A e’ AaAl for d=_1 21b)
* A =" A for g = +1

wherer, d, s € {—1, +1} determine the convention for rotation,
displacement, and squeezing operators, respectively. Let

P L {R?DESE, R;S7D?, DI R}SS, DYSS R},

SR, DY, SEDER?} (22)

be the set of permutations of Ry, Dg, and Sg defined in
(21). Then, generalized mixed and pure Gaussian states can
be respectively defined as'

—_ _ 7,d),51 = 7,d), 51
E _max() =Gy (Gl €D9(H) (23
0,,8
7,dl,31
[ ) 2G50y e (23b)
0,0, 8
7,dl, 31 : i i
where Gy, 5 € P. The equivalence conditions for generalized

Gaussian states and those defined according to (8) and (11)
are given by the Bogoljubov-Valatin transformations of ¢, u,
and ( that satisfy

7,dl,51 = ( Gﬂ,m,a)f

RyD,S;EwS!DIR}, = Gy 5 Eu(Gy x5 (242)

INotice that the Gaussian states defined in (8) and (11) are obtained by

using G = RIDJST with r = +1, d = +1, and s = +1.
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Displacement

D,

Squeezing
S¢

! T

¢ I

Fig. 1.
defined in (27) and (29), for (, i, ¢, t, and k given as input parameters.
\dl,3
R;D,5|0) = Gy 50) (24b)

for all r,d,s € {—1,+1} and G’;JE € P. Such transfor-
mations are listed in Table I that reports, for each convention
and permutation of rotation, displacement, and squeezing
operators, the transformations of ¢, i, and ( that satisfy (24a)
and (24b). For example, consider the mixed Gaussian state

D S; Rf Eu(RY) (S5) (D) 29)

—
=
[l

Dy Sy R;r( )
which is obtained from (23a) with G‘; (j ; = DTSjR and
convention determined by r = +1,d = —1,and s = —1 From
Table I, = - s; R} (n) in (25) is equivalent to the Gaussian
state Z(+0, —ae? —Be7?? 7n) defined according to (8).
The same approach holds for pure Gaussian states by using
(23b) and (24b).

Remark 1: The equivalence conditions in Table I extend the
results of this paper to any kind of Gaussian states and PVGSs.
This is also important from the experimental perspective, as
optical setups generating Gaussian states may be easier to
implement for specific orders of rotation, displacement, and
squeezing operations than for others. O

D. Photon-Varied Gaussian States

PVGSs are a subclass of PVQSs, which have been
introduced in [84] to unify PAQSs and PSQSs. PVGSs
can be implemented by exciting (photon-addition) or anni-
hilating (photon-subtraction) photons from initial Gaussian
states of the quantized electromagnetic field. For PVGSs,
photon-addition and photon-subtraction operations are jointly
described by the photon-variation operator, which is defined

A

as
vy {AT

For a mixed Gaussian state = (¢, u, ¢, ) € D(H) defined in
(8), the corresponding mixed PVGS is (see Fig. 1)
VEE (¢, 1, ¢, 1) (V)
k)~
Ny ()
where k is the number of photon-variation operations (i.e., k
photon-additions or k£ photon-subtractions) and Nﬂ(k) (n) is the

associated normalization constant (photon-variation is a non-
unitary operation), which is given by

NP () = 0e{ VB (¢, 1, C, 1) (V5

for
for

t = —1 (photon-subtraction)

t =+1 (photon-addition). (26)

EW (6,1, ¢ 1) £ €eD(H) @7)

kY (28)
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D;J,SC—'thSC-DJRT E(k) ((bv.u’Cvﬁ):

Rotation Photon-variation
Ry Vit

T T

4 {t. k}

Block diagram representing the sequence of operations to obtain mixed PVGSs (dashed dotted box) and pure PVGSs (dashed box), respectively

Analogously, for a pure Gaussian state |¢, i, () € H defined
in (11), the corresponding pure PVGS is (see Fig. 1)

1
i (61, Q) & — 5Vl eH (29)
Nﬂ
with associated normalization constant given by
k
N = Ji¢, SV EVEI6, 1,0). (30)

Remark 2: PVGSs extend multiple classes of quantum
states. In particular, PVGSs reduce to: (i) Gaussian states when
k = 0; (ii) photon-subtracted Gaussian states (PSGSs) [89]
when t = —1 and k£ > 0; and (iii) photon-added Gaussian
states (PAGSs) when ¢t = +1 and k& > 0. Furthermore, when
n— 0, — 0, and k£ > 0, PSGSs reduce to coherent states
(i.e., eigenvectors of A), while PAGSs reduce to photon-added
coherent states [64], [86]. O

IV. FOCK REPRESENTATION OF PVGSSs

The Fock representation is fundamental for assessing the
properties of quantum states. This section derives the Fock
representation of PVGSs.?

A. Mixed PVGSs

The Fock representation of a mixed PVGS is determined in
the following theorem.

Theorem 1: Let 547 (¢, 1, ¢, 71) € D(H) be a mixed PVGS
obtained by performmg k photon-variation operations specified
by ¢ on the initial mixed Gaussian state = (¢, 1, ¢, 7) € D(H).
The Fock representation of E%

B (6, 1, ¢, ) s

2 (¢ ¢n) = > (| (¢, 1, ¢, 1) |m)|n)m)
n,m=0

where the Fock coefficients (n|=

(qb,u ¢,n)|m) and the

normalization constant N3 (k )( ) are respectlvely given by (31)
and (32), at the bottom of the next page, with

A =140+ (2n+ 1)sinh(|¢[)? (33a)
B = (27 + 1) sinh(|¢|) cosh(|¢])e'(“¢F2¢+m)  (33Db)
C= n(n+1) (33¢)

724 (7t %)(1 + cosh(2[¢]))

2For simplicity of notation, hereafter we drop the dependence on the
parameters characterizing the quantum states when it is clear from the context.
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L1 9l¢)er(£e+2d+m)
p = {1+ 3)snhilc)e 530
+ (74 4) (1 + cosh(2[¢]))
Eo et L+ (n+ 1)pcosh(2(¢])
n? + (n+ 3)(1 + cosh(2[¢]))
(e ppsmbeehe T
n2 4+ (7 + 3)(1 4 cosh(2(¢]))
and min{n,m} — tk > 0. In (32), the vector p, is
given by
py = [pert pre?]’ (34)
whereas the matrix
Cs _ [Csh,l [CS}LQ
[Cilay [Cilas
has the following elements
1
(Ciluy = 5120+ 1) cosh(2lc]) (350)
1
[Culy o = 520+ 1) sinh(2|C)er 740 (35b)
[Cyy = ;(2n+ 1) sinh(2[¢[)e~2¢+40  (35¢)
1
(Culao = 512+ 1) cosh(2(¢]) — o] (35d)
with s € {-1,+1}. O
Proof: See Appendix B. X

The normalization constant in (32) can also be used to
determine the mean number of photons of mixed PVGSs
through

(k+1) /-
— Ny () t+1
tI'{A A‘—’ﬂ (¢7ﬂ1<7n)} - N(k) _ 2
7 ()
Remark 3: For k = 0, E% (6,1, ¢,n) = E(o,p,¢,7)
and, from (32), Nﬂ(o)( ) = 1 as required by the Gaussianity

of E(¢, p, ¢, 7). O

As we will see in Section VI, the Fock representation is
fundamental to designing QSC systems employing PVGSs.
In [111] and [112], an alternative characterization of quantum
states was established based on the number and distribution of
the roots of their stellar representation, which is connected to
their Husimi @-function. Notice that the Husimi Q-function
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of the mixed PVGS EY7(¢,u,¢,7m) is obtained from
(31) as

oo

23 ISP ) lm ml€)

n,m=0

QY (& 0,1, ¢ 1) =

where |£) is a coherent state. Therefore, (31) can
also be used to characterize mixed PVGSs according
to [111], [112].

B. Pure PVGSs

The Fock representation of a pure PVGS is determined in
the following theorem

Theorem 2: Let |1/JT (¢, 1,¢)y € H be the pure PVGS
obtained by performing k photon-variation operations speci-
fied by ¢ on the initial pure Gaussian state |¢, i, () € H. The
Fock representation of \wék)(gb, i, C)) is given by (36), at the
bottom of the page, with

Ayc = /sech(|(])
1
X exp (— . (ul2+( *)? tanh(|¢]) ¢4 ) )) G37)
pt 4 p* tanh(|¢]) e (¢t
Nu,¢ = = (38)
V/2tanh([¢]) ex(£¢+m)
O
Proof: See Appendix C. X

To complete the representation in (36), it is necessary to
determine the normalization constant Nﬂ(k) given by (30), which
is related to the inner product <w%k) (¢, 1, C) |wék) (¢, 11, C)). The
derivation of Na(k) is given in the next section where we derive
the inner product of pure PVGSs.

V. INNER PRODUCT OF PURE PVGSS

Pure PVGSs can also be characterized based on their
orthogonality, which is of particular interest as it impacts the
performance of QSC. Therefore, as will be seen in Section VI,
the inner product is fundamental to designing and analyzing
QSC systems. This section derives the inner product of pure
PVGSs.

1

(n|ES (¢, 1, ¢, 7)m) =

A [+ 5]

PR ex
N (n)\/AT —[BP?

D>"2

2

(m!n!)?!

((m—k)! (n— k)!)t“(

3 {

D

m—tk \*
2
z Hyy i
2) ) th, tk(

A2~ |BJ?

V2E*

var |
v |D|> G

) 7_1
vD

1
Nﬂ(k) (n) = (=1)" Hp 1 <[XZ”¢] 9 {XZC_IL/ZT} 11 [XZI%}

[XZC tzf} 2‘— {ch_tquz)) 32)

M\H

A, n+k)!

+1

o
P

7l n=0

) (6, 1,C)) =

( tanh(|c]) ¢’
n! (n — k52! <

1(L¢H204T) % (” -
> (36)

t
9 Hy 1 ()In + kT>
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A. Generalized Bilinear Generating Function for the Inner
Product of Pure PVGSs

The following theorem establishes that the inner product of
two PVGSs defines a generalized bilinear generating function
of ordinary Hermite polynomials.

Theorem 3: Let |wéh)(g0,§,w)>, |¢g€)(¢>,u,o> € H be two
PVGSs obtained from the initial Gaussian states |, &, w),
|o, i, ¢) € H by performing h and k photon-variation opera-
tions, respectively. Without loss of generality, consider h < k.
The inner product ( (h)(ga &, )|@/}<k)(¢>7 1,¢)) defines the
generalized bilinear generating functlon of ordinary Hermite
polynomials given by (39) at the bottom of the page. O

Proof: See Appendix D. %

B. Expressions for the Inner Product of Pure PVGSs

The bilinear generating function associated with
( éh)(go,g, )|w(’“)(¢,u,§)> in (39) can be used to obtain
closed-form expressions for the inner product of: (i) two
PAGSs, for (s,t) = (+1,+1); (ii) a PAGS and a PSGS, for
(s,t) = (+1,—1); (iii) a PSGS and a PAGS, for (s,t) =
(—1,+1); and (iv) two PSGSs, for (s,t) = (—1,—1). Let

p = (Vianhel) @20 ) franb(g eneeszor.
(40)

By specializing Theorem 3 for the aforementioned cases (i),
(ii), (iii), and (iv), the following corollaries are obtained.

Corollary 1: The inner product of two PAGSs
" (0, €,w), [ (6, 1.Q)) € H. with h < k, is given by
(41) at the bottom of the page. O

Proof: See Appendix E X

Corollary 2: The inner product of a PAGS |1/)ih) (p,&w)) €
# and a PSGS |4 (¢, 1,¢)) € H, with h < k, is given by
(42) at the bottom of the page. O

Proof: See Appendix F. X
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Corollary 3: The inner product of a PSGS |w(,h)(<p, & w)) €
H and a PAGS |’(/)$€)(¢, i, C)) € H, with h < k, is given by

(43) at the bottom of the page. O
Proof: See Appendix G. X
Corollary 4: The inner product of two PSGSs

1" (0, €,w)), [0 (¢, 1, €)) € H, with h < k, is given by

(44) at the bottom of the page. O
Proof: See Appendix H. X

Theorem 3 facilitates the derivation of the normalization
constant Nﬂ(k) of a pure PVGS |w%k)(¢,u,C)> € H. Indeed,
from the normalization condition

W (@, 1, O (6, 1, C)) = 1

Nﬂ(k) is obtained by using (41) and (44) for t = +1 and t =
—1, respectively. Notice that the normalization constant of a
pure PVGS is related to the normalization constant in (28) of
a mixed PVGS through

[ Ar(K) (=
i n—0 Nﬂ (n)

N = lim

Remark 4: For k = 0, the initial Gaussian state is kept
untouched and, from (5), it can be easily verified that Na(o) =1
as required by its Gaussianity. o

As we will see in Section VI, the inner product is
fundamental to deriving the ultimate performance limits of
QSC with PVGSs. Furthermore, it can also be used to
determine the Husimi @-function of pure PVGSs and to
characterize them according to [111], [112]. In particular, the
Husimi @Q-function of a pure PVGS |1/Jék)(q’>, i, ¢)) is found
to be

1
Qf (&6 m.0) = lim ~[(w5 (0,6 W)l (6,1, 0) "

Therefore, when s and ¢ are assigned, (41), (42), (43), and
(44) allow one to obtain Q%k)(f 0, 1, C).

Az,wA#»C

W5 (0,6, W) [0S (6, 1, 0)) = NN

n= mdx{hés 1,kd¢,1} [

o ((tanh(|w|) el(é“”“Q“’*"))

n+ hos,—1)! (n + kds,—1)!
N(n —sh)! (n —kde,1)! (n — tk)!

n—h551

n—tk
¢ h W(LCH2h+m)\ 2 "
)( anh(|¢]) e : ) Ho on(nf) Ho (npe) | (39)

*

W (6.6, )P (6, 1,0)) = W (5| (Fomdee ‘“““”’”) GOt i bl p™) 4D
W (0, € ) (601, 0)) = (ta“h“' ’(“”‘“’”) G0 i 0+ Kl ) @)
6% (0, )6 (6,11, ) = h)N(k) (DN ) g+ b 0g) @
W (0, &, )™ (¢, 1,C)) = 7‘4(5) (tanh (e ;(AH%H ); G (0% s M ho kL, p) (44)
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Fig. 2. Minimum DEP for the binary discrimination between a mixed PVGS,
affected by phase diffusion, and the thermal state as a function of the diffusion
coefficient . We set ¢ = 0, ¢ = 0.50 and determine p such that each state
has a mean number of photons np = 10. The thermal state has intensity
7 = 0.10 and the prior probabilities are p; = p2 = 0.5.

VI. QUANTUM SENSING AND COMMUNICATION
viA PVGSs

This section explores the use of PVGSs for various QSC
applications and evaluates their performance in several case
studies.

A. Quantum Sensing With PVGSs

Quantum sensing, which is the process of measuring
physical quantities of a target system by exploiting quan-
tum mechanical properties [23], [24], [59], is essential for
a wide plethora of applications including quantum illumina-
tion [21], [22], [23], [85], quantum tomography [23], and
quantum metrology [23], [24], [25], [26], [113]. In such
applications, the quantity of interest is measured based on
the interaction between a quantum sensing system and the
target system. Specifically, after the interaction, the final
state of the quantum sensor contains information about the
quantity of interest. However, due to the stochastic nature of
quantum interactions, the final state cannot be deterministically
identified. To address this problem, we consider quantum
state discrimination (QSD) [41], [86], [114], [115], [116].
The sensing performance is related to the discrimination error
probability (DEP), which depends on the quantum states
used for sensing. In the literature, QSD was considered for
photon-added coherent state [86] and PSGSs [89]. However,
a complete characterization of QSD with PVGSs has been
missing until now. In the following, we explore QSD with
PVGSs. Let

2 { &8 (Gr, i, )i i = 1,2, M| C D(H) 45)

be a set of M PVGSs, representing the initial states of a quan-
tum sensor, respectively with prior probability py,pa, ..., pup
satisfying Zf\il p; = 1. The interaction between the sensor
and the target system can be modeled as the mapping

T:8—8

25
100 F T T T ]
- —k- Two Gaussian states E
B —— Two PSGS, k=2 T
i PAGS and PSGS, k =2
I -o- Two PAGS, k=2 ]
o
10! | | \ \
0 0.3 0.6 0.9 1.2 1.5
o
Fig. 3. Minimum DEP for the binary discrimination between two pure

PVGSs, affected by phase diffusion, as a function of the diffusion coefficient
o. We set 1 = ¢2 = 0, (1 = (2 = 0.25 and determine p; and p2 such
that the two states have respectively a mean number of photons np; = 8 and
npy = 4. PVGSs have k1 = k2 = k = 2 and the prior probabilities are
p1 =p2 = 0.5.

g — ki _

i

(46)

for i = 1,2,..., M, where S c D(H) is the set of quan-
tum states resulting from the interaction between the initial
PVGSs and the target system. Therefore, the QSD problem is
formulated for quantum states in S. Let Yﬂ(k)((b, w, ¢, 1) € S
be the unknown random state of the quantum sensor after the
interaction, the QSD problem can be formulated as a M-ary
hypothesis testing problem where the i-th hypothesis is

Hy Y (6,1, 10) = X (b1, i, Gio )

for v = 1,2,..., M. The QSD performance is quantified
by the DEP, i.e., the probability of incorrectly discrim-
inating Tﬂ(k)(qﬁ,,u,g,ﬁ). A case of particular interest is
the binary (M = 2) QSD, namely when Tﬂ(k)w,u,g,ﬁ)
has to be discriminated among the binary set S =
{T%l)(¢1, w1, C1, 1), Tt%”)(gbg, 2, Ca, 1) }.2 According to the
optimal binary discrimination strategy, the minimum achiev-
able DEP is given by [41]

.1
Po=5(1—1All)

5 (47)

where || - H(l = tr{4/(")T(:)} denotes the trace-norm and
A = p2T$2)(¢27M2,C2ﬁ) - plrt(ﬂkl)(thﬂ'lvglvﬁ)' Note
that (47) can be evaluated using the Fock representation of
the states Tg i)(@,ui,g,ﬁ), which is related to the Fock
representation (31) of the initial PVGSs E'%i)(th Wiy Ciy ).
The ultimate performance limit for binary QSD is obtained
from (47) by considering an ideal interaction, i.e., T = Iy

3Examples of quantum sensing applications that rely on binary QSD are
quantum illumination and signal detection. In the former, hypotheses are
associated with the presence or the absence of a target. In the latter, hypotheses
describe the detection of the signal state or the background state.
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v

in (46),* and pure PVGSs, ie., n 0. In this case, P,

becomes

2

1- \/1 - 4p1p2|<¢%1)(¢1,u17C1)|¢%2)(¢27u2, )]
2

Pe
(48)

and depends
PVGSs.

To evaluate the performance of PVGSs, we consider a
binary QSD problem for a scenario in which the interaction
between the quantum sensor and the target system is mod-
eled as a phase diffusion process, which can be used to
describe decoherence caused by a scattering process. Phase
diffusion relates Tgi)(@,m,g,ﬁ) and E%i)(qbi,ui,(i,ﬁ)
via [117]

) —(n—m)?c?
<’I’L|T%l)(¢17ﬂzu<’uﬁ’)|m> =e ( )

for 1 1,2, where ¢ > 0 denotes the diffusion
coefficient shaping the exponential decay of off-diagonal
Fock coefficients of initial PVGSs. Notice that, from (49),
the Fock representation of PVGSs derived in Section IV
is fundamental to determining the Fock representation
of Tg@l)(¢lv His <i7 ﬁ)

Fig. 2 shows the minimum DEP as a function of o when
discriminating between a mixed PVGS and the thermal state
in the presence of phase diffusion. Notice that PVGSs always
outperform the Gaussian state. In particular, the performance
improves with the number of photon-variations and degrades
with the diffusion coefficient. For each PVGS setting, there
exists a threshold for o above which P, approaches a hor-
izontal asymptote. This can be attributed to the fact that
when o is large, the Fock coefficients outside the diagonal
are strongly attenuated by the exponential decay in (49).
Fig. 2 also shows that the performance improvement of
PAGSs over the Gaussian state is larger than that of PSGSs.
This is due to the fact that for squeezing ¢ = 0.50, the
benefits of photon-subtraction vanish since PSGSs approach
coherent states, which are invariant to photon-subtractions.
Therefore, the use of PSGSs is recommended only for large
squeezing.

Similar considerations hold for Fig. 3, which shows the
minimum DEP as a function of o when discriminating between
two pure (7 = 0) PVGSs obtained by performing two photon-
variations and affected by phase diffusion. As in Fig. 2,
PVGSs always outperform Gaussian states, with significant
performance gain when discriminating between a PAGS and
a PSGS and, especially, between two PAGSs. Notice that,
despite n = 0, P, is higher than that shown in Fig. 2. This
can be attributed to the fact that the two PVGSs, with intensity

on the inner product of the two pure

4All interactions 7 are (non-strictly) contractive in the trace-norm.
Therefore, the output states of any interaction will be closer in trace-norm
distance than the input ones, thus resulting in a worse Pe. The ideal interaction
T = Iy, however, is an isometry so it leads to achieving (48).
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np; = 8 and ny, = 4, are less distinguishable compared to
the scenario discussed in Fig. 2.

Finally, notice that the results discussed in Fig. 2 and
Fig. 3 also show that PVGSs facilitate more reliable quan-
tum communications than Gaussian states. Indeed, classical
information, represented by digital symbols with known prior
probabilities, can be properly encoded into PVGSs propagating
through a quantum channel (modeled analogously to (46))
to the destination. Then, the quantum receiver can perform
QSD to identify the transmitted PVGSs and retrieve the
encoded symbols. In this case, the DEP takes the role of the
symbol error probability. Therefore, P, shown in Fig. 2 and
Fig. 3 can be respectively interpreted as the minimum symbol
error probability of an on-off keying quantum communication
and of a two-level quantum communication in the presence
of phase diffusion (e.g., caused by scattering in optical
fibers).

B. Quantum Key Distribution With PVGSs

Quantum key distribution (QKD) [118], [119], [120], [121],
[122], [123], [124] is crucial for secure quantum communica-
tions and allows two parties, commonly referred to as Alice
and Bob, to generate and exchange theoretically secure crypto-
graphic keys by exploiting properties of quantum mechanics.
Widely adopted metrics to assess the QKD performance are
the transmission distance and secure key generation rate.

In discrete-variable QKD (DV-QKD) protocols, Alice
exploits the particle nature of light to encode the information
into qubits, for example realized as the polarization of pho-
tons. The security of such protocols relies on the fact that
Alice employs an ideal single-photon light source. However,
practical implementations of such sources exhibit a non-zero
probability of generating undesired vacuum and multi-photon
radiations. Vacuum radiations reduce the secure key generation
rate as no information is transmitted, while multi-photon
radiations can be exploited by an eavesdropper Eve to extract
information about the key, thus harming the unconditional
security of QKD [125], [126], [127]. Such a problem is
exacerbated in scenarios with lossy quantum channels. This
calls for more robust protocol variants, such as the widely
adopted decoy-state protocol [128], [129], [130], [131]. The
idea behind the decoy-state protocol is that Alice employs
two light sources, namely signal source and decoy source,
with slightly different intensities so that the emitted radiations
cannot be distinguished by Eve. This strategy allows Alice
and Bob to detect Eve by comparing measured and theoretical
statistics of decoy radiations.

Developing QKD with the decoy-state protocol requires the
design of strong sub-Poissonian signal and decoy light sources.
However, in typical implementations using weak Gaussian
states, the secure key generation rate is limited by the high
vacuum emission probability. The use of PVGSs in DV-QKD
was explored for subclasses of PAGSs [92], [93], [94]. In the
following, we characterize DV-QKD with PVGSs and show
that using weak PVGSs can provide better QKD performance
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swe | k| Pro | Py | Xaa Pr
Gaussian 0 0.39 0.28 0.33
PSGS 1 0.36 0.32 0.32
PSGS 2 0.37 0.30 0.33
PAGS 1 0 0.89 0.11
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Fig. 4. Photon number distribution of a light source producing Gaussian

states and PVGSs with n = 0, ¢ = 0, ¢ = 0.20, and p chosen such that the
states have np = 1.20. The table reports vacuum, single-photon, and multi-
photon emission probabilities; the histogram depicts the dominant terms of
the photon number distribution.

than using weak Gaussian states with the same intensity. The
stochastic photon emission of a light source producing PVGSs
obeys the corresponding photon number distribution given by
the diagonal elements of the associated Fock representation,
namely (31) and (36) for mixed and pure PVGSs, respec-
tively. The photon number distribution of a mixed PVGS
is given by
Py (11, 6m) = (n|Z0 (6, G m)|m) - (50)
which describes how likely a light source producing PVGSs
emits radiations with n photons. In particular, (50) shows
that the stochastic photon emission can be engineered by
tuning w, T (both determine 7 through the Planck law), k,
@, 1, and €. From (50), the probabilities of emitting vacuum,
single-photon, and multi-photon radiations are respectively
P (6,11,C, 1), P (6,1, ¢, 1), and 3, oy PV (6, 1, G, 7).
Fig. 4 shows the photon number distribution of Gaussian
states and PVGSs with n = 0, ¢ = 0, ( = 0.20, and p chosen
such that the states have a mean number of photons n, = 1.20.
In particular, the table reports the probabilities of emitting
vacuum, single-photon, and multi-photon radiations, while
the histogram represents the dominant terms of the photon
number distribution. Notice that photon-variation operations
reduce the vacuum emission probability in favor of a higher
single-photon probability, thus being beneficial to the secure
key generation rate. Note also that PAGSs with £ = 1 are
strong sub-Poissonian with Pi’f%((b,,u,(,ﬁ) = 0.89 due the
photon-addition, which eliminates the vacuum and reduces
the multi-photon emission probability. Therefore, we expect
that PAGSs provide better QKD performance than PSGSs and
Gaussian states. However, the use of PAGSs with k£ > 2 is for-
bidden in order to have a non-zero single-photon probability.
Otherwise, PAGSs would emit only multi-photon radiations,
thus compromising the QKD security. This restriction does
not apply for PSGSs. Nonetheless, PSGSs with k = 2 exhibit
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Fig. 5. Lower bound on the secure key generation rate of the decoy-state

protocol as a function of the transmission distance using Gaussian states and
PVGSs. Signal states’ parameters are the same used for the scenario in Fig. 4.
Regarding decoy states’ parameters, we set ¢ = 0, ¢ = 0.20 and determine
p to guarantee np = 1.15.

higher vacuum probability and lower single-photon probability
than PSGSs with £ = 1.

To assess the performance of QKD employing PVGSs,
we evaluate the lower bound on the secure key genera-
tion rate of the decoy state protocol with a single decoy
as [130]

1 :
Ru = 5 (~Qufeha(Re) + PYYYill = ho(er)]) 6D

where (g is the overall gain for the signal source, fo
is the bidirectional error correction efficiency, hz(:) is the
binary entropy function, R. is the total error rate, IE’ﬂ(k)
is the single-photon emission probability for signal PVGSs,
YY) is the detection probability conditioned to the event
that Alice sent a single-photon radiation, and e; is the
error rate associated with single-photon radiations. Consider
a non-ideal optical fiber-based quantum channel operating
at wavelength A = 1550nm with attenuation coefficient
0.2 dB/km, which introduces photon-loss during propagation,
and an imperfect detection system with parameters given
in [132].

Fig. 5 shows the lower bound on the secure key generation
rate of the decoy-state protocol with Gaussian states and
PVGSs as a function of the transmission distance. Notice
that, as we expected in light of considerations on Fig. 4,
PAGSs outperform both PSGSs and Gaussian states. This can
be attributed to the fact that the photon-addition operation
eliminates the vacuum emission and increases the single-
photon emission probability at the expense of the multi-photon
one. On the other hand, PSGSs perform slightly better than
Gaussian states due to the small reduction of the vacuum emis-
sion probability in favor of the single-photon one. However,
PSGSs with k = 1 perform better than PSGSs with & = 2 due
to the higher single-photon emission probability.
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VII. CONCLUSION

This paper established a theoretical foundation for QSC
employing PVGSs, accommodating for noise in state prepa-
ration. We characterized PVGSs by deriving their Fock
representation and their inner product using generalized H-
KdF polynomials. We also determined equivalence conditions
for Gaussian states obtained from arbitrary permutations of
rotation, displacement, and squeezing operators. Finally, we
explored the use of PVGSs for QSC, utilized their char-
acterization to design QSC systems, and quantified their
performance in several case studies. Numerical results show
that using PVGSs for QSC can provide significant performance
improvements compared to Gaussian states. The findings of
this paper pave the way for the development of QSC with
non-Gaussian states.

APPENDIX A
PROOF OF LEMMA 1

Let x,y, z,u,t € C, |t| < 1, and m,n € N. By substituting
(4) in (1) with y = —1 and v = —1, we have

Hpn(22,—-1;22,—1]t)
min{m,n} m n
- Z (k) (k> t* KV H g (2) Hp— i (2) . (52)
k=0

Now, by using [133, eq. (4.1)], the right-hand side of (7) can be
written as (53) at the bottom of the page. Finally, (7) follows
by using (6), (52), and (5) in (53).

APPENDIX B
PROOF OF THEOREM 1

Let E(¢, 1, ¢, 1) € D(H) be the initial Gaussian state and
'(k (¢, 1, ¢,m) € D(H) the corresponding PVGS obtained

by performing k photon-variation operations specified by t¢.
From (16) and (17), it follows

(n|=5" (6, 1, ¢, n)|m) = (| ZF7(0, 1, ¢, m)|m). (54)
The definition of V3 in (26) yields
. — k)
(VA )¥in) = EZM w6

I
— k)]
By using (55) in (54), we obtain (56) at the bottom of
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(4.11)] and by noting that, from (16), |a| = |ul, |{| = [¢],
and £ = /( + 26.

To complete the proof, we have to demonstrate (32). This
requires deriving the covariance matrix of the initial Gaussian

state. From (15), we can write

R¢DM SC = Duew R¢S\C\e144 (578.)
oo Ry 2c S R_ 2 (57b)

where (57b) follows from (57a) by using S; = R4< S‘QREC ,

R¢R4< = R¢+4<, and RTLC = R _ e By using (57b)

and the invariance of =i, o rotatlonal transformations,
= (¢, u,(,n) can equivalently be written as

E(¢7M Cﬂ ) #el¢R¢+ZC ‘S’|<|‘—’th‘s"clR

Notice that the Gaussian state in (58) has the same
form as that in [52], thus allowing us to use the same
approach to derive its covariance matrix. Recall that, in the
Heisenberg picture, R4 and S; generate linear canonical
Bogoljubov-Valatin transformations of the bosonic opera-
tors A and A'. Such transformations are described in the
phase space through the associated symplectic matrices. In
particular, the symplectic matrices associated with R Pps
and Sj¢| are

4( Melqs (58)

. cos(¢ + %) —sin(¢ + %)
R, .c= 59
i Lin((b +£5) cos(p + 5 o
. 1<l 0
Si¢| = [60 eq]- (60)

Hence, by using (59) and (60), the covariance matrix of

E (¢, u, ¢, 1) in (58) is
N .
V = (n+§)R¢+%cSQ|QR¢+4g

Finally, (32) follows by using [84, eqs. (14), (22), and (25a)],
(61), and (1), with Ko given by (34) and C; given by (35).

(61)

APPENDIX C
PROOF OF THEOREM 2
Let |w(k)(¢, 1,¢)y € H be the pure PVGS obtained by
performmg k photon-variation operations specified by ¢ on the
initial pure Gaussian state |¢, u, ¢) € H. From (16), (18), and
(29), we have

the page. Then, (31) follows by using [110, eqgs. (4.4),
.(4.23),. and (5.2)], (33), and (1) in (56). In particular, (33) W(k)( b, 1, C)) = (k) VT D;S |O> (62)
is derived from [110, egs. (2.9), (2.10), (4.9), (4.10), and Nﬂ
=t 1 2zyt — (xQ + y2)t2
n r Hn s = st
S el M) = exp< -
) mi§5}<r> (S>(2t)kk'H ( z—yt )H ( y — xt ) (53)
P k k Ay —k /71 — t2 s—k /71 — t2
1 (n—kzﬂ)!(m—kﬂ).
(| ES (¢, 11, ¢, 1) |m) = : 21 (n — k| Dy S; 5 S D jm — th) (56)
' @) V(0 —K5) (o = k! e
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The definition of V7 in (26) yields
(n + kL)1
(n+ k50!

By expanding |¢§k) (¢, i, €)) in the Fock basis and using (63),
(62) can be written as

Viiln) = |+ th) (63)

k 1
0,000 =~ S [0l Dis0
71 n=0
(n+ kt+1)
—= tk)|. (64
By substituting p =n + k(t — 1)/2 in (64), we obtain
*) L K[, -t )
68,00 = 5 |t K5 1Ds810
7 p=0
k)! t+1
) lp+k——)|. (65
Now, by using (19) and S{ = Sjg’ we have that
(m|DaS;|0) = (m|S” . Dyn, 1 10) (66)

In particular, (66) gives the m-th Fock coefficient of a
Yuen’s squeezed coherent state with displacement parameter
ﬂ)\f + ﬂ*yé and squeezing parameter fCA [109]. Finally,
by using (66) in (65) with m = p — k(t — 1)/2 as well
as [109, eq. (3.23)], [134, eq. (3.4)], (16), (37), and (38), we
obtain (36).

APPENDIX D
PROOF OF THEOREM 3

Let [ (0, €,w)), [0 (6, 11,C)) € H be the two PVGSs
obtained from the 1n1t1a1 Gaussian states |p, &, w), |, 1, ) €
‘H, with h < k. By using (36), the inner product can be written
as in (67), at the bottom of the page, where we used the
definition of the Kronecker delta to write 651 = (s + 1)/2,
1= (+1)/2,0s_1=—(s—1)/2,and §; 1 = —(t—1)/2.

Now, define p = m + hds; and ¢ = n + ké, from
which follow m + hds,_1 = p — h(ds1 — 0s,—1) = p — sh;
m+h :p_h(és,l - 1) :p+h637—1; n+k5t,—1 =4q—
k(i1 —0t,-1) = qg—th;and n+k = q— k(01 — 1) =

29

g+ ko 1. By using such relations together with the orthonor-
mality of the Fock states, (39) follows from (67) after some
algebra.

APPENDIX E
PROOF OF COROLLARY 1

By using (s,t) = (+1,+1), the substitution ¢ = n —
max{hds 1, kd 1} =n—k, (7), and (5) in (39), we obtain (68)
shown at the bottom of the page. By exploiting generalized
Leibniz’s differentiation rule and the recursive derivative
formula for ordinary Hermite polynomials, together with [135,
egs. (40) and (41)], (1), (40), and (5), we obtain (41). Notice
that, as required in (7), (41) is well defined as |p| < 1.

APPENDIX F
PROOF OF COROLLARY 2
By using (s,t) = (+1,—1) and the substitution

q n — max{hds 1, k0. 1} n — h in (39), we
obtain, after some algebra, the following bilinear generating
function

W (0, &, )™ (¢, 1, )

_ Aewhug (tanh(|(]) e’
_NWNW

h+k
1(£C42¢+m)
)

o0

DI

:0

Then, by using (5), (40), and (7) in (69), we obtain (42). The
convergence of (69) to (42) is ensured as |p| < 1.

ngw Hq+h+k(77#7()- (69)

APPENDIX G
PROOF OF COROLLARY 3
By using (s,t) = (—1,+1) and the substitution ¢ = n —
max{hds1,kd;,1} = n —k in (39), we obtain, after some
algebra, the following bilinear generating function

W™ (o, €,w) [0 (6, 1,0))

*

htk
_ AZ,UJA#,C tanh(|w|) e (Lwt2p+m) \ 2
(k) 9
+
m+hds _q

ZwAu,C i

W9 (0, €, W)l (6, 1, Q) =

(m+h)! (n+k)!

h k

n+kdy _q

X(tanh(|§|)e’(4+2¢+”>)f

2

[\/m‘ (m + hds,—1)!'n! (n+ kde,—1)!

-~ NMnt
((tanhua4)ew<w+2¢+w>) ; )
2

Honyns, (06 w) Hurks, i (M) {m+ hdsa|n + ]‘75%1)] (67)

AE,WA;U«,C

*

W (0, &, ) (0, 1,C)) =

ah

Xi
o )

NJ(F;L)NJ(Fk) 2 (1

. NE = Mu,CP
hlﬂfﬁk#ﬂnm<M)Hk<i/li;>]

k*}
éw+2ap+rr))

1 <tanh(h4)

pz)g 2

(63)
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[ee]
P .
> q'24 Hyn (1 ) Hy () - (70)
q=0 "'

Then, by using (5), (40), and (7) in (70), we obtain (43). The
convergence of (70) to (43) is ensured as |p| < 1.

APPENDIX H
PROOF OF COROLLARY 4

By using (s,t) = (—1,-1) and max{hds1,kd;1} = 0
in (39), we obtain, after some algebra, the following bilinear
generating function

WP (0, €,w) 0™ (¢, 1, 0))

E—h
_ Aruhug (g)h tanh(|¢[)e(£c20+m \ 2
- NP2 2
%D crgaHarn (mEw) Hesk(ac)- - (7D
q=0 "

Then, by using (5), (40), and (7) in (71), we obtain (44). The
convergence of (71) to (44) is ensured as |p| < 1.
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