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Abstract—Quantum ranging is crucial in several applications
such as radar and localization. This paper determines the quan-
tum advantage of ranging with single-mode displaced squeezed
states. Exact analytical expressions for the quantum Fisher
information (QFI) about the range parameter are derived in
the presence of thermal loss channels characterized by arbitrary
loss and noise parameters. The quantum advantage, termed as
gain, is determined as a ratio of QFI with and without employing
squeezing. It is shown that the gain can be unboundedly large in
the optical regime whereas it is upper bounded in the microwave
regime.

Index Terms—Ranging, quantum Fisher information, squeezed
states, quantum estimation.

I. INTRODUCTION

Quantum technologies may provide substantial performance
improvements in various fields such as sensing, communica-
tion, and control, compared to their classical counterparts [1]–
[6]. Among the quantum technologies, quantum photonics
emerged as a prominent candidate for many applications
since photons weakly interact with their environment, making
them more resilient to decoherence with respect to other
alternatives [7]–[9]. Within quantum photonics, entangled and
squeezed light sources have been key enablers to realize the
quantum advantage [4], [10], [11].

Quantum photonics has found applications in radar, lidar,
and quantum illumination. The advantage provided by quan-
tum systems for ranging and Doppler parameter estimation
are examined in [12] and [13] where the authors show that
employing a two-mode squeezed vacuum state can lead to
substantial performance gains compared to classical states.
The advantage provided by employing displaced squeezed
states in joint range and velocity estimation is examined
in [14], which shows that Heisenberg scaling is attainable
using homodyne measurement. The works [15]–[18] on quan-
tum illumination examine under various settings the quantum
advantage provided by two-mode squeezed state on target
detection while the work [19] provides analytical expressions
of the quantum Fisher information (QFI) for phase estimation
in single-mode Gaussian metrology and derives the optimal
Gaussian measurement systems.

Most of the works in the literature consider two-mode
squeezed light and employ a retained idler as a key enabler
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for quantum advantage for quantum illumination and quantum
radar. These scenarios correspond to a passive form of ranging
where the reflected waveform together with the stored idler is
used. In active ranging, the goal is to extract the maximum
amount of information from the received waveform where
both the transmitting and receiving parties cooperate. In this
case, the (retained) idler cannot be used by the receiver, which
makes two-mode squeezing not suitable for active ranging.

It has been shown that quantum technologies may bring sub-
stantial improvements in range and velocity estimation [12],
[13], [20].1 In the literature the quantum advantage has been
investigated assuming particular forms of background radi-
ation for given levels of loss and noise. In particular, two
regimes have been mainly investigated: the optical and the
microwave frequency regime. In the optical frequency regime,
the effect of the background radiation can be mostly neglected,
and photon loss represents the main source of performance
impairment. In the microwave frequency regime, the back-
ground radiation significantly affects the system performance.
Deriving the QFI in the presence of thermal loss channels
characterized by any loss and noise levels is a challenging
task, which makes the investigation of the quantum advantage
an elusive goal in many cases of practical interest.

The fundamental questions related to active quantum rang-
ing are: What is the quantum advantage offered by quantum
states under different loss and noise conditions, and how
should quantum states be designed to maximize the Fisher
information about the parameter to be estimated? The answers
to these questions will enable the design of active-ranging
systems with quantum technologies and provide guidelines on
which situations these technologies should be adopted. This
paper determines the quantum advantage for active ranging of
monochromatic single-mode Gaussian states. In particular, the
key contributions of this paper are as in the following.
• We determine the theoretical limits of range estimation

with single-mode monochromatic Gaussian states in the
presence of general thermal loss channels.

• We analyze the quantum advantage provided by
monochromatic displaced squeezed states in optical as
well as microwave frequency regime.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Matrices
and operators are denoted by bold uppercase letters. The

1For classical radiation sources, the fundamental limits of active ranging
and localization can be found in [21]–[23].
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rotation matrix is defined as R(θ) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
for

θ ∈ [0, 2π). The set of non-negative integers, real numbers,
and complex numbers are denoted by N0, R, and C, respec-
tively. The imaginary unit is ı =

√
−1. The symbols L(H)

and B(H) denote the set of linear operators and bounded
linear operators on a Hilbert space H, respectively. For two
operators A,B ∈ L(H), [[A,B ]]− = AB − BA denotes
their commutator. For an operator A ∈ L(H) the Hermitian is
denoted by A†, and for a scalar z ∈ C the complex conjugate
is denoted by z†.

II. PRELIMINARIES

This section first presents background material on con-
tinuous variable systems, then introduces the definitions of
displaced squeezed states, and finally discusses the properties
of the thermal loss channel. The underlying Hilbert space H
is separable and infinite dimensional. For a monochromatic
electromagnetic wave, the Hamiltonian describing the system
is given by [8]

H =
P 2 + ω2

0 Q
2

2
= ℏω0(A

†A+ I/2) , (1)

where ω0 is the angular frequency of the monochromatic
wave, ℏ is the reduced Planck constant, Q ∈ L(H) and
P ∈ L(H) are respectively the canonical position and mo-
mentum observables that satisfy the commutation relationship
[[Q,P ]]− = ıℏ I , while A = (ω0Q + ıP )/

√
2ℏω0 ∈ L(H)

and A† ∈ L(H) are respectively the field annihilation and
creation operators that satisfy the commutation relationship
[[A,A† ]]− = I . The observable N ≜ A†A ∈ L(H) is called
the number observable whose eigenkets {|n⟩, n ∈ N0} form
a basis for H and satisfy

N |n⟩ = n|n⟩ , n ∈ N0 . (2)

The eigenket |n⟩ describes a quantum state with n photons,
which is referred to as the number state. The action of
the annihilation and creation operator on number states is
respectively described by the following relations for n ∈ N0:2

A|n⟩ = √
n |n− 1⟩ and A†|n⟩ =

√
n+ 1 |n+ 1⟩ . (3)

A. Displaced Squeezed States

For single-mode optics, the generation and manipulation of
light is mainly accomplished by the operations of displacement
and squeezing.3 Upon their application to the vacuum state, the
displacement operator and squeezing operator form coherent
states and squeezed states, respectively. The displacement
operator D(αd) ∈ B(H) is defined to be

D(αd) ≜ exp{αdA
† − α†

dA} , (4)

where αd = rd e
ıϕd ∈ C, rd ∈ [0,∞), and ϕd ∈ [−π, π). The

displacement operator is unitary with D†(αd) = D(−αd). The

2In (3), A|0⟩ is understood to be the null ket, i.e., the 0 vector of H.
3The most generic state description also involves rotation operations.

However, the effect of rotation operators can be absorbed into the displacement
and squeezing operations [11].

application of the displacement operator to the vacuum state
|0⟩ gives coherent states

|αd⟩ ≜ D(αd) |0⟩ = e−
r2d
2

∞∑
n=0

αn
d√
n!
|n⟩ . (5)

Coherent states, also called quasi-classical states, are used to
model classical radiation and are eigenstates of the annihilation
operator A|αd⟩ = αd |αd⟩. The effect of the displacement
operator D(αd) on the annihilation operator A is described by

D†(αd)AD(αd) = A+ αdI , (6)

which shows that the displacement operator displaces the
annihilation operator along the direction specified by αd.

Another form of monochromatic wave is described by
squeezed states in which the variance of one of the quadratures
is reduced and the variance of the conjugate quadrature is
increased. The squeezing operator S(αs) ∈ B(H) is defined
to be the unitary operator

S(αs) ≜ exp
{1

2

(
α†
sA

2 − αsA
†2)} ∈ B(H) , (7)

where αs = rs e
ıϕs ∈ C, rs ∈ [0,∞), and ϕs ∈ [−π, π). The

application of the squeezing operator S(αs) to the vacuum
state |0⟩ gives squeezed states

|αs⟩ ≜ S(αs) |0⟩ . (8)

The effect of the squeezing operator S(αs) on the annihilation
operator A is described by

S†(αs)AS(αs) = cosh(rs)A− eıϕs sinh(rs)A
† . (9)

For ϕs = 0, the effect of squeezing on quadrature operators is
described by4

S†(αs)QS(αs) = e−rsQ , (10a)
S†(αs)PS(αs) = ersP , (10b)

which show that one of the quadratures is reduced and the
other is increased. The effects of squeezing and displacement
can be combined to make a displaced squeezed state.5

|α(αs, αd)⟩ ≜ D(αd)S(αs)|0⟩ . (11)

The displaced squeezed states form the most general form of
pure Gaussian states for a single-mode field, see Appendix A.
The phase-space representation of a displaced squeezed state
is illustrated in Figure 1a.

In classical mechanics, the system evolution is described in
terms of canonical variables in the phase-space representation.
In such a representation, each point in the phase-space refers to
the exact value of a canonical variable. In quantum mechanics,
canonical variables are promoted to canonical observables (P
and Q), and the Heisenberg uncertainty relation precludes the

4The quadrature operators considered in the phase-space are dimensionless
quadrature operators with Q = (A + A†)/

√
2 and P = (A − A†)/

√
2ı

that satisfy the commutation relationship [[Q,P ]]− = ıI .
5By introducing a different parametrization, the reversed order of the two

operations in (11) could also be considered. Defining λ = cosh(|αs|) and ν =

− sinh(|αs|)eıϕs , one gets |α(αs, αd)⟩ = S(αs)D(αdλ− α†
dν)|0⟩ [11].
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Fig. 1: Phase-space representation of a Gaussian state. Plot (a): transmitted displaced squeezed state |α(αs, αd)⟩. Plot (b):
received state under the ideal channel conditions κ = 1, n̄ = 0; the effect of the phase rotation on mean value and squeezing
angle is indicated by the green arrows. Plot (c): effect of an only-loss channel with κ = 1/4, n̄ = 0; this channel reduces the
effect of squeezing and pulls the mean down to the origin. Plot (d): effect of a thermal loss channel with κ = 1/4, n̄ = 1;
with respect to the case shown in (c), the standard deviations of the canonical operators increase.

exact knowledge of both canonical operators since they do
not commute. Then, a point in the phase-space description
is replaced by an ellipse whose center is the mean value
of the canonical observables with respect to the underlying
quantum state, and whose diameters in the direction of the
ellipse major and minor axes denote the standard deviation of
the observables in that direction. For example, the horizontal
direction may refer to the standard deviation of the position
observable with respect to the underlying quantum state and
then the vertical direction refers to the momentum observable.

B. Thermal Loss Channel

The Bogoluibov transformation enables to describe the
receiver’s field annihilation operator Ar ∈ L(H) as a function
of the transmitter’s field annihilation operator As ∈ L(H) and
the background radiation’s annihilation operator Ab ∈ L(H).
The Bogoluibov transformation for thermal loss channel is6 [3]

Ar =
√
κ eıω0τAs +

√
1− κAb , (12)

where 1 − κ ∈ [0, 1] characterizes the propagation loss
experienced by the signal and τ is an unknown propaga-
tion time to be estimated for ultimately inferring the range
R ≜ c τ , with c denoting the speed of light. The relation (12)
describes the action of a quantum channel whose input and
output are, respectively, As and Ar, while the background
radiation described by Ab represents the noise contribution.
The background radiation is in a thermal state with average
number of photons n̄/(1− κ), where7

n̄ =
1

exp{ℏω0/(kBT )} − 1
(13)

in which kB is the Boltzmann constant and T is the tem-
perature at the receiver in Kelvins. The effect of the quantum

6In (12), the channel phase information is assumed to be known and only
phase introduced by the propagation is considered.

7The division by 1 − κ rules out possible “shadow effects” or “passive
signatures” of the thermal radiation [24].

channel described by (12) on the mean vector d and covariance
matrix V of a Gaussian state is [3]

d −→ √
κR(ω0τ)d , (14a)

V −→ κR(ω0τ)V RT(ω0τ) +
(2 n̄+ 1− κ)

2
I , (14b)

where the elements of V and d are provided in Appendix A.
The effect of the phase delay, propagation loss, and ther-

mal noise in the phase-space representation is illustrated in
Figures 1b, 1c, and 1d, respectively. It can be seen that the
propagation loss decreases the mean value and the amount of
squeezing of the quadratures, whereas the noise increases the
variance of quadratures isotropically.

III. QUANTUM ADVANTAGE FOR RANGING

For single-mode monochromatic waves, the coherent state
|αd⟩ behaves as a classical electromagnetic field since the
measurement of electric field observable gives the same results
as in the classical theory. To produce a quantum effect, the
squeezing is needed. This section determines the quantum
advantage provided by the squeezing operation in estimating
the unknown parameter τ , with such an advantage expressed in
terms of the QFI. First, the QFI is derived for general displaced
squeezed states, then the analysis focuses on the important
cases of optical and microwave frequency regimes.

For a displaced squeezed state |α(αs, αd)⟩, the received
state is a Gaussian state with mean vector and covariance
matrix given, respectively, by

d =
√
2κ

[
rd cos(ω0τ + ϕd)
rd sin(ω0τ + ϕd)

]
, (15a)

V =
1

2
R

(
ω0τ +

ϕs

2

)[
v− 0
0 v+

]
RT

(
ω0τ +

ϕs

2

)
, (15b)

where v± = κ
(
e±2rs − 1) + 2 n̄+ 1.

The average number of photons for a state described by
the density operator Ξ is given by n̄tx ≜ Tr{ΞA†A}
and represents the total excitation energy – a measure of
the system resources. For the displaced squeezed state, the
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density operator is given by Ξ = |α(αs, αd)⟩⟨α(αs, αd)| and
the average number of photons n̄tx is given by the sum of
individual contributions related to squeezing (sinh2(rs)) and
displacement (r2d) operations:

n̄tx = sinh2(rs) + r2d . (16)

Let γ ≜ sinh2(rs)/n̄tx and 1−γ = r2d/n̄tx be the fractions of
system resources allocated to perform the squeezing and the
displacement operations, respectively. The next sections ad-
dress the optimal resource allocation problem that maximizes
the system performance with respect to γ for a fixed n̄tx.

A. Quantum Fisher information

Appendices B and C provide details for the calculation of
QFI about the parameter τ for a displaced squeezed state
described by Ξ = |α(αs, αd)⟩⟨α(αs, αd)|. In this case the
QFI is given by

J(τ) =
32κ2ω2

0

(
sinh4(rs) + sinh2(rs)

)
1 + (2 n̄+ 1)2 + 4κ (2 n̄+ 1− κ) sinh2rs

+ 4κω2
0 r

2
d

(
sin2(ϕeq)

v+
+

cos2(ϕeq)

v−

)
, (17)

where ϕeq ≜ ϕd−ϕs/2−π/2 ∈ (−π, π]. Since v+ ⩾ v− > 0,
the QFI is maximized by setting ϕeq = 0 or ϕeq = π, e.g.,
by setting ϕd = 0, ϕs = −π. Thus, the maximum over ϕeq ∈
(−π, π] of the QFI in (17) is given by

J(τ ; γ, n̄tx) ≜
32κ2ω2

0 γ n̄tx(1 + γ n̄tx)

1 + (2 n̄+ 1)2 + 4κ (2 n̄+ 1− κ) γ n̄tx

+
4κω2

0 (1− γ) n̄tx

κ
(
e−2 asinh(

√
γ n̄tx) − 1

)
+ 2 n̄+ 1

, (18)

where the definition of γ has been employed. The “gain” is
defined to be8

G(τ ; γ, n̄tx) ≜
J(τ ; γ, n̄tx)

J(τ ; 0, n̄tx)
, (19)

where the denominator represents the QFI corresponding to
the single operation of displacement, which is J(τ ; 0, n̄tx) =
4κω2

0 n̄tx/(2 n̄+ 1).
The aim of the optimal resource allocation is to maximize

the QFI over γ for a fixed value of n̄tx. The optimal QFI and
the corresponding optimal gain are respectively given by

J⋆(τ ; n̄tx) ≜ max
γ∈[0,1]

J(τ ; γ, n̄tx) , (20a)

G⋆(τ ; n̄tx) ≜ max
γ∈[0,1]

G(τ ; γ, n̄tx) , (20b)

and are achieved by

γ⋆ ≜ argmax
γ∈[0,1]

J(τ ; γ, n̄tx) . (21)

Two wavelength regimes that deserve special attention are:
(i) the optical regime, in which the background radiation
satisfies n̄ ≪ 1; and (ii) the microwave regime, in which the
background radiation satisfies n̄ ≫ 1. The QFI in these two
regimes is considered next.

8Thus, a quantum advantage is obtained if G(γ, n̄tx) > 1.

B. Quantum advantage in optical regime
Employing (18) and imposing n̄ ≪ 1, the QFI in the optical

regime can be written as9

Jo(τ ; γ, n̄tx)=
16κ2ω2

0γ n̄tx(γ n̄tx + 1)

1 + 2κ (1− κ) γ n̄tx

+
4κω2

0 (1− γ)n̄tx

κ
(
e−2 asinh(

√
γ n̄tx) − 1

)
+ 1

. (22)

Note that the first term of the QFI depends only on the squeez-
ing contribution γ n̄tx, whereas the second term depends on
both the squeezing contribution γ n̄tx and the displacement
contribution (1− γ)n̄tx. According to (19), the quantum gain
results in

Go(τ ; γ, n̄tx)=
4κ γ (γ n̄tx + 1)

1 + 2κ (1− κ) γ n̄tx

+
(1− γ)

κ
(
e−2 asinh(

√
γ n̄tx) − 1

)
+ 1

. (23)

In the limit for n̄tx → ∞ with any γ ∈ (0, 1] we have

lim
n̄tx→∞

Go(τ ; γ, n̄tx) =
2 γ

1− κ
+

1− γ

1− κ
, (24)

where the relations γ n̄tx ≫ 1 and e−2 asinh(
√
γ n̄tx) ≪ 1 are

used. Expression (24) is maximized when γ → 1 which shows
that for large n̄tx the optimal strategy consists of allocating
all the system resources to perform squeezing. On the other
hand, the limit for n̄tx → 0, with γ ∈ (0, 1] gives

lim
n̄tx→0

Go(τ ; γ, n̄tx) = 4κ γ + 1− γ , (25)

showing that allocating all of the system resources to squeez-
ing is advantageous when κ > 1/4.

For κ = 1, i.e., in the ideal condition with no propagation
loss, (23) yields

Go(τ ; γ, n̄tx)
∣∣∣
κ=1

= 4γ (γ n̄tx + 1) + (1− γ)e2 asinh(
√
γ n̄tx) ,

that for γ = 1 reduces to

Go(τ ; 1, n̄tx)
∣∣∣
κ=1

= 4 (n̄tx + 1) . (26)

C. Quantum advantage in microwave regime
Employing (18) and n̄ ≫ 1, the QFI in the microwave

regime can be written as

Jµ(τ ; γ, n̄tx) =
8κ2ω2

0 γ n̄tx(1 + γ n̄tx)

n̄
(
n̄+ 2κ γ n̄tx

)︸ ︷︷ ︸
squeezing

+
2κω2

0 (1− γ) n̄tx

n̄︸ ︷︷ ︸
displacement

.

(27)
In (27), the two contributions of the displacement and

squeezing operations are separated. Maximizing (27) over γ
yields

J⋆
µ (τ ; n̄tx) =


8κ2ω2

0 n̄tx(n̄tx+1)
n̄ (n̄+2κ n̄tx)

if 2κ n̄tx > n̄

2κω2
0 n̄tx

n̄ if 2κ n̄tx ⩽ n̄ .
(28)

9In the following, the subscript “o” will be appended to quantities that refer
to the optical regime while the subscript “µ” will be appended to quantities
that refer to the microwave regime.
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Fig. 2: Quantum advantage. Plot (a): G⋆
o (τ ; n̄tx) versus n̄tx in the optical regime with frequency 400 THz. Plot (b) H⋆

µ (τ ; ρ)
versus ρ in the microwave regime with frequency 300 MHz.

Expression (28) reveals that the Fisher information is max-
imized by allocating all the system resources to perform
either the squeezing operation only (if 2κ n̄tx > n̄) or the
displacement operation only (otherwise).

Since n̄ ≫ 1, in the case that 2κ n̄tx > n̄, one has n̄tx+1 ≈
n̄tx. Using such an approximation and introducing the signal-
to-noise ratio (SNR)

ρ ≜
2κ n̄tx

n̄
, (29)

the optimal QFI in (28) can be expressed as a function of ρ:

I⋆µ (τ ; ρ) =

 ω2
0

2ρ2

ρ+1 if ρ > 1 ,

ω2
0 ρ if ρ ⩽ 1 ,

(30)

where I⋆µ (τ ; ρ) = J⋆
µ (τ ; ρ n̄/(2κ)). Expression (30) shows that

the optimal QFI is proportional to ω2
0 , proportional to the SNR

for ρ ⩽ 1, and approximately proportional to the SNR for
ρ ≫ 1. In particular, the optimal QFI obtained for ρ ≫ 1 is
twice the optimal QFI obtained for ρ < 1.

Posing H⋆
µ (τ ; ρ) = G⋆

µ(τ ; ρ n̄/(2κ)) for the optimal gain as
function of the SNR ρ, yields

H⋆
µ (τ ; ρ) =


2ρ
ρ+1 if ρ > 1

1 if ρ ⩽ 1 .
(31)

Since 1 ⩽ H⋆
µ (τ ; ρ) < 2, the gain is upper bounded by two.

D. Numerical Results

A quantum advantage is achieved when the QFI obtained
by employing displaced squeezed states is larger than the
QFI obtained by employing displaced-only states that do
not encompass any genuinely quantum effect. Depending on
the operating conditions, such a quantum advantage can be
substantial.

Figure 2a shows the optimal gain in the optical
regime G⋆

o (τ ; n̄tx) as a function of n̄tx for κ ∈
{0.01, 0.1, 0.25, 0.5, 0.75}, with operating frequency ω0 =
2π 400 THz. In this figure, G⋆

o (τ ; n̄tx) has been obtained

from (23) by numerical optimization using grid search meth-
ods. It can be observed that G⋆

o (τ ; n̄tx) increases by increasing
the system resources n̄tx. For large propagation loss (small
values of κ), large system resources are needed to achieve
a quantum advantage. Conversely, in the presence of high-
quality channels encompassing less severe propagation loss,
a quantum advantage can be achieved even by employing
negligible system resources.

In Figure 2b, the optimal gain in the microwave regime
H⋆

µ (τ ; ρ) shown in (31) is plotted with respect to ρ, with ω0 =
2π 300 MHz. In this case ρ > 1 gives an optimal gain strictly
larger than one and upper bounded by two, while there is no
quantum advantage for ρ ⩽ 1.

IV. FINAL REMARKS

This paper determines the QFI for range estimation with
single-mode displaced squeezed states and quantifies the quan-
tum advantage provided by these states compared to coherent
states that do not entail quantum resources. The main findings
are summarized in the following.

• We provide exact expressions for the QFI about range
estimation with single-mode monochromatic displaced
squeezed states, thus characterizing the theoretical limits
for range estimation using such quantum resources.

• In the optical regime with large propagation loss, a mean-
ingful quantum advantage can only be achieved by using
a considerable amount of system resources, i.e., states
characterized by a large average number of photons.

• In the optical regime with small propagation loss, a quan-
tum advantage is guaranteed even with limited system
resources; the quantum advantage becomes unboundedly
large in the ideal case of no propagation loss.

• In the microwave regime, the effects of the displacement
and squeezing operations combine additively in the op-
timal QFI, which is only a function of the SNR and the
frequency; the gain is upper bounded by two.
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APPENDIX A: GAUSSIAN STATES

Gaussian states are quantum states for which the 0-order
characteristic function χ(αd) ≜ Tr{ΞD(αd)} takes the
Gaussian form [25]

χ(αd) = exp
{
− α†

d⟨A⟩+ αd⟨A⟩† −
(1
2
+ ⟨∆A†∆A⟩|αd|2

)
+ ℜ

{
⟨∆A2⟩(α†

d)
2
}}

, (32)

where for an operator F , ⟨F ⟩ ≜ Tr{ΞF }. Substituting
αd = (xR + ıxI)/

√
2 and x = [xR xI]

T in (32), the 0-order
characteristic function of a Gaussian state can be written in
the form [26]

χ(x) = exp
{
− xTΩV ΩTx

2
+ ı(Ωd)Tx

}
, (33)

with

Ω =

[
0 1

−1 0

]
, d =

[
⟨Q⟩
⟨P ⟩

]
,

V =

 ⟨∆Q2⟩ ⟨ [[∆Q,∆P ]]
+
⟩

2

⟨ [[∆Q,∆P ]]
+
⟩

2 ⟨∆P 2⟩

 . (34)

APPENDIX B: QFI OF GAUSSIAN STATES

The QFI about the parameter τ for a single-mode Gaussian
state is given by [27]

J(τ) =

3∑
n=0

a2n
4v2 − (−1)n

+
(∂d
∂τ

)T

V −1
(∂d
∂τ

)
, (35)

where V =S
(
v 0
0 v

)
ST, and

an = 2Tr
{
S−1 ∂V

∂τ
ST−1

Mn

}
, n = 0, 1, 2, 3 , (36)

with {Mn} given in terms of Pauli matrices:

M0=
ı
[
0 −ı
ı 0

]
√
2

, M1=

[
1 0
0 −1

]
√
2

, M2=

[
1 0
0 1

]
√
2

, M3=

[
0 1
1 0

]
√
2

.

APPENDIX C: QFI COMPUTATION

For space reasons, the calculation of the QFI is only
sketched. The QFI calculation for Gaussian states in (35) in-
volves the partial derivatives of the mean vector and covariance
matrix of the received state given in (15). It can be checked
that following relations hold

S−1 ∂V

∂τ
ST−1

= κω0

[
0 sinh(2rs)

sinh(2rs) 0

]
, (37)

and
∂d

∂τ
=

√
2κω0 rd

[
− sin(ω0τ + ϕd)
cos(ω0τ + ϕd)

]
. (38)

From (36), by algebraic computation we obtain ai = 0 for
i = 0, 1, 2, and a3 = 2

√
2κω0 sinh(2rs). Using value of a3

along with (37) and (38) in (35) gives the QFI in (17).
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